3.26.5 \(\int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)^{3/2}} \, dx\) [2505]

3.26.5.1 Optimal result
3.26.5.2 Mathematica [A] (verified)
3.26.5.3 Rubi [A] (verified)
3.26.5.4 Maple [B] (verified)
3.26.5.5 Fricas [A] (verification not implemented)
3.26.5.6 Sympy [F]
3.26.5.7 Maxima [F]
3.26.5.8 Giac [B] (verification not implemented)
3.26.5.9 Mupad [F(-1)]

3.26.5.1 Optimal result

Integrand size = 26, antiderivative size = 115 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)^{3/2}} \, dx=-\frac {90415 \sqrt {1-2 x}}{2156 \sqrt {3+5 x}}+\frac {3 \sqrt {1-2 x}}{14 (2+3 x)^2 \sqrt {3+5 x}}+\frac {543 \sqrt {1-2 x}}{196 (2+3 x) \sqrt {3+5 x}}+\frac {56421 \arctan \left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )}{196 \sqrt {7}} \]

output
56421/1372*arctan(1/7*(1-2*x)^(1/2)*7^(1/2)/(3+5*x)^(1/2))*7^(1/2)-90415/2 
156*(1-2*x)^(1/2)/(3+5*x)^(1/2)+3/14*(1-2*x)^(1/2)/(2+3*x)^2/(3+5*x)^(1/2) 
+543/196*(1-2*x)^(1/2)/(2+3*x)/(3+5*x)^(1/2)
 
3.26.5.2 Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.64 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)^{3/2}} \, dx=\frac {-\frac {7 \sqrt {1-2 x} \left (349252+1067061 x+813735 x^2\right )}{(2+3 x)^2 \sqrt {3+5 x}}+620631 \sqrt {7} \arctan \left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )}{15092} \]

input
Integrate[1/(Sqrt[1 - 2*x]*(2 + 3*x)^3*(3 + 5*x)^(3/2)),x]
 
output
((-7*Sqrt[1 - 2*x]*(349252 + 1067061*x + 813735*x^2))/((2 + 3*x)^2*Sqrt[3 
+ 5*x]) + 620631*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/15 
092
 
3.26.5.3 Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.07, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.308, Rules used = {114, 27, 168, 27, 169, 27, 104, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {1-2 x} (3 x+2)^3 (5 x+3)^{3/2}} \, dx\)

\(\Big \downarrow \) 114

\(\displaystyle \frac {1}{14} \int \frac {101-120 x}{2 \sqrt {1-2 x} (3 x+2)^2 (5 x+3)^{3/2}}dx+\frac {3 \sqrt {1-2 x}}{14 (3 x+2)^2 \sqrt {5 x+3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{28} \int \frac {101-120 x}{\sqrt {1-2 x} (3 x+2)^2 (5 x+3)^{3/2}}dx+\frac {3 \sqrt {1-2 x}}{14 (3 x+2)^2 \sqrt {5 x+3}}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {1}{28} \left (\frac {1}{7} \int \frac {11567-10860 x}{2 \sqrt {1-2 x} (3 x+2) (5 x+3)^{3/2}}dx+\frac {543 \sqrt {1-2 x}}{7 (3 x+2) \sqrt {5 x+3}}\right )+\frac {3 \sqrt {1-2 x}}{14 (3 x+2)^2 \sqrt {5 x+3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{28} \left (\frac {1}{14} \int \frac {11567-10860 x}{\sqrt {1-2 x} (3 x+2) (5 x+3)^{3/2}}dx+\frac {543 \sqrt {1-2 x}}{7 (3 x+2) \sqrt {5 x+3}}\right )+\frac {3 \sqrt {1-2 x}}{14 (3 x+2)^2 \sqrt {5 x+3}}\)

\(\Big \downarrow \) 169

\(\displaystyle \frac {1}{28} \left (\frac {1}{14} \left (-\frac {2}{11} \int \frac {620631}{2 \sqrt {1-2 x} (3 x+2) \sqrt {5 x+3}}dx-\frac {180830 \sqrt {1-2 x}}{11 \sqrt {5 x+3}}\right )+\frac {543 \sqrt {1-2 x}}{7 (3 x+2) \sqrt {5 x+3}}\right )+\frac {3 \sqrt {1-2 x}}{14 (3 x+2)^2 \sqrt {5 x+3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{28} \left (\frac {1}{14} \left (-56421 \int \frac {1}{\sqrt {1-2 x} (3 x+2) \sqrt {5 x+3}}dx-\frac {180830 \sqrt {1-2 x}}{11 \sqrt {5 x+3}}\right )+\frac {543 \sqrt {1-2 x}}{7 (3 x+2) \sqrt {5 x+3}}\right )+\frac {3 \sqrt {1-2 x}}{14 (3 x+2)^2 \sqrt {5 x+3}}\)

\(\Big \downarrow \) 104

\(\displaystyle \frac {1}{28} \left (\frac {1}{14} \left (-112842 \int \frac {1}{-\frac {1-2 x}{5 x+3}-7}d\frac {\sqrt {1-2 x}}{\sqrt {5 x+3}}-\frac {180830 \sqrt {1-2 x}}{11 \sqrt {5 x+3}}\right )+\frac {543 \sqrt {1-2 x}}{7 (3 x+2) \sqrt {5 x+3}}\right )+\frac {3 \sqrt {1-2 x}}{14 (3 x+2)^2 \sqrt {5 x+3}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{28} \left (\frac {1}{14} \left (\frac {112842 \arctan \left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )}{\sqrt {7}}-\frac {180830 \sqrt {1-2 x}}{11 \sqrt {5 x+3}}\right )+\frac {543 \sqrt {1-2 x}}{7 (3 x+2) \sqrt {5 x+3}}\right )+\frac {3 \sqrt {1-2 x}}{14 (3 x+2)^2 \sqrt {5 x+3}}\)

input
Int[1/(Sqrt[1 - 2*x]*(2 + 3*x)^3*(3 + 5*x)^(3/2)),x]
 
output
(3*Sqrt[1 - 2*x])/(14*(2 + 3*x)^2*Sqrt[3 + 5*x]) + ((543*Sqrt[1 - 2*x])/(7 
*(2 + 3*x)*Sqrt[3 + 5*x]) + ((-180830*Sqrt[1 - 2*x])/(11*Sqrt[3 + 5*x]) + 
(112842*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/Sqrt[7])/14)/28
 

3.26.5.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 114
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e 
 - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) 
 - b*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && ILtQ[m, -1] && (IntegerQ[n] || 
 IntegersQ[2*n, 2*p] || ILtQ[m + n + p + 3, 0])
 

rule 168
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]
 

rule 169
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n, 2*p]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 
3.26.5.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(201\) vs. \(2(88)=176\).

Time = 1.19 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.76

method result size
default \(-\frac {\left (27928395 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x^{3}+53994897 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x^{2}+34755336 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x +11392290 x^{2} \sqrt {-10 x^{2}-x +3}+7447572 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+14938854 x \sqrt {-10 x^{2}-x +3}+4889528 \sqrt {-10 x^{2}-x +3}\right ) \sqrt {1-2 x}}{30184 \left (2+3 x \right )^{2} \sqrt {-10 x^{2}-x +3}\, \sqrt {3+5 x}}\) \(202\)

input
int(1/(2+3*x)^3/(3+5*x)^(3/2)/(1-2*x)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/30184*(27928395*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/ 
2))*x^3+53994897*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2) 
)*x^2+34755336*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))* 
x+11392290*x^2*(-10*x^2-x+3)^(1/2)+7447572*7^(1/2)*arctan(1/14*(37*x+20)*7 
^(1/2)/(-10*x^2-x+3)^(1/2))+14938854*x*(-10*x^2-x+3)^(1/2)+4889528*(-10*x^ 
2-x+3)^(1/2))*(1-2*x)^(1/2)/(2+3*x)^2/(-10*x^2-x+3)^(1/2)/(3+5*x)^(1/2)
 
3.26.5.5 Fricas [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.88 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)^{3/2}} \, dx=\frac {620631 \, \sqrt {7} {\left (45 \, x^{3} + 87 \, x^{2} + 56 \, x + 12\right )} \arctan \left (\frac {\sqrt {7} {\left (37 \, x + 20\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{14 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) - 14 \, {\left (813735 \, x^{2} + 1067061 \, x + 349252\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{30184 \, {\left (45 \, x^{3} + 87 \, x^{2} + 56 \, x + 12\right )}} \]

input
integrate(1/(2+3*x)^3/(3+5*x)^(3/2)/(1-2*x)^(1/2),x, algorithm="fricas")
 
output
1/30184*(620631*sqrt(7)*(45*x^3 + 87*x^2 + 56*x + 12)*arctan(1/14*sqrt(7)* 
(37*x + 20)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3)) - 14*(813735*x^ 
2 + 1067061*x + 349252)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(45*x^3 + 87*x^2 + 5 
6*x + 12)
 
3.26.5.6 Sympy [F]

\[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)^{3/2}} \, dx=\int \frac {1}{\sqrt {1 - 2 x} \left (3 x + 2\right )^{3} \left (5 x + 3\right )^{\frac {3}{2}}}\, dx \]

input
integrate(1/(2+3*x)**3/(3+5*x)**(3/2)/(1-2*x)**(1/2),x)
 
output
Integral(1/(sqrt(1 - 2*x)*(3*x + 2)**3*(5*x + 3)**(3/2)), x)
 
3.26.5.7 Maxima [F]

\[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)^{3/2}} \, dx=\int { \frac {1}{{\left (5 \, x + 3\right )}^{\frac {3}{2}} {\left (3 \, x + 2\right )}^{3} \sqrt {-2 \, x + 1}} \,d x } \]

input
integrate(1/(2+3*x)^3/(3+5*x)^(3/2)/(1-2*x)^(1/2),x, algorithm="maxima")
 
output
integrate(1/((5*x + 3)^(3/2)*(3*x + 2)^3*sqrt(-2*x + 1)), x)
 
3.26.5.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 311 vs. \(2 (88) = 176\).

Time = 0.39 (sec) , antiderivative size = 311, normalized size of antiderivative = 2.70 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)^{3/2}} \, dx=-\frac {56421}{27440} \, \sqrt {70} \sqrt {10} {\left (\pi + 2 \, \arctan \left (-\frac {\sqrt {70} \sqrt {5 \, x + 3} {\left (\frac {{\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}\right )\right )} - \frac {25}{22} \, \sqrt {10} {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )} - \frac {297 \, \sqrt {10} {\left (107 \, {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{3} + \frac {23800 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}{\sqrt {5 \, x + 3}} - \frac {95200 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}}{98 \, {\left ({\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{2} + 280\right )}^{2}} \]

input
integrate(1/(2+3*x)^3/(3+5*x)^(3/2)/(1-2*x)^(1/2),x, algorithm="giac")
 
output
-56421/27440*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3 
)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10 
*x + 5) - sqrt(22)))) - 25/22*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22 
))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))) - 
 297/98*sqrt(10)*(107*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) 
- 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^3 + 23800*(sqrt(2) 
*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 95200*sqrt(5*x + 3)/(sqrt(2)* 
sqrt(-10*x + 5) - sqrt(22)))/(((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5 
*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^2 + 280)^2
 
3.26.5.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)^{3/2}} \, dx=\int \frac {1}{\sqrt {1-2\,x}\,{\left (3\,x+2\right )}^3\,{\left (5\,x+3\right )}^{3/2}} \,d x \]

input
int(1/((1 - 2*x)^(1/2)*(3*x + 2)^3*(5*x + 3)^(3/2)),x)
 
output
int(1/((1 - 2*x)^(1/2)*(3*x + 2)^3*(5*x + 3)^(3/2)), x)